Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 535
Filtrar
1.
Cells ; 13(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38607030

RESUMO

Cockayne syndrome (CS) is a rare hereditary autosomal recessive disorder primarily caused by mutations in Cockayne syndrome protein A (CSA) or B (CSB). While many of the functions of CSB have been at least partially elucidated, little is known about the actual developmental dysregulation in this devasting disorder. Of particular interest is the regulation of cerebral development as the most debilitating symptoms are of neurological nature. We generated neurospheres and cerebral organoids utilizing Cockayne syndrome B protein (CSB)-deficient induced pluripotent stem cells derived from two patients with distinct severity levels of CS and healthy controls. The transcriptome of both developmental timepoints was explored using RNA-Seq and bioinformatic analysis to identify dysregulated biological processes common to both patients with CS in comparison to the control. CSB-deficient neurospheres displayed upregulation of the VEGFA-VEGFR2 signalling pathway, vesicle-mediated transport and head development. CSB-deficient cerebral organoids exhibited downregulation of brain development, neuron projection development and synaptic signalling. We further identified the upregulation of steroid biosynthesis as common to both timepoints, in particular the upregulation of the cholesterol biosynthesis branch. Our results provide insights into the neurodevelopmental dysregulation in patients with CS and strengthen the theory that CS is not only a neurodegenerative but also a neurodevelopmental disorder.


Assuntos
Síndrome de Cockayne , Células-Tronco Pluripotentes Induzidas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , DNA Helicases/genética , Enzimas Reparadoras do DNA/metabolismo , Síndrome de Cockayne/genética , Síndrome de Cockayne/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/genética , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Encéfalo/metabolismo , Organoides/metabolismo
2.
Breast Cancer ; 31(3): 417-425, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38561479

RESUMO

BACKGROUND: Patients with breast cancer (BC) at advanced stages have poor outcomes because of high rate of recurrence and metastasis. Biomarkers for predicting prognosis remain to be explored. This study aimed to evaluate the relationships between circulating tumor cells (CTCs) and outcomes of BC patients. PATIENTS AND METHODS: A total of 50 female were enrolled in this study. Their diagnoses were determined by clinical characteristics, image data, and clinical pathology. CTC subtypes and TOP2A gene expression on CTCs were detected by CanPatrol™ technology and triple color in situ RNA hybridization (RNA-ISH), which divided into epithelial CTCs (eCTCs), mesenchymal CTCs (MCTCs), and hybrid CTCs (HCTCs) based on their surface markers. Hormone receptor, including estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER-2) expression, was measured by immunohistochemistry (IHC) method before treatment. The risk factors for predicting recurrence and metastasis were calculated by COX risk regression model. The progression-free survival (PFS) of patients was determined using Kaplan-Meier survival curve. RESULTS: The patients with a large tumor size (≥ 3 cm) and advanced tumor node metastasis (TNM) stages had high total CTCs (TCTCs) (P < 0.05). These patients also had high TOP2A expression level. COX risk regression analysis indicated that TOP2A expression levels in TCTCs, ER + , HER-2 + , and TNM stages were critical risk factors for recurrence and metastasis of patients (P < 0.05). The PFS of patients with ≥ 5 TCTCs, ≥ 3 HCTCs, and positive TOP2A expression in ≥ 3 TCTCs was significantly longer than that in patient with < 5 TCTCs, < 3 HCTCs, and TOP2A expression in < 3 TCTCs (P < 0.05). In contrast, the PFS of patients with positive hormone receptors (ER + , PR + , HER-2 +) also was dramatically lived longer than that in patients with negative hormone receptor expression. CONCLUSIONS: High TCTC, HCTCs, and positive TOP2A gene expression on CTCs were critical biomarkers for predicting outcomes of BC patients. Positive hormone receptor expression in BC patients has significant favor PFS.


Assuntos
Biomarcadores Tumorais , Neoplasias da Mama , DNA Topoisomerases Tipo II , Resistencia a Medicamentos Antineoplásicos , Células Neoplásicas Circulantes , Humanos , Feminino , Células Neoplásicas Circulantes/metabolismo , Células Neoplásicas Circulantes/patologia , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Neoplasias da Mama/tratamento farmacológico , DNA Topoisomerases Tipo II/genética , DNA Topoisomerases Tipo II/metabolismo , Pessoa de Meia-Idade , Resistencia a Medicamentos Antineoplásicos/genética , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Adulto , Idoso , Receptor ErbB-2/metabolismo , Prognóstico , Receptores de Estrogênio/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/genética , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Recidiva Local de Neoplasia/patologia , Recidiva Local de Neoplasia/genética , Receptores de Progesterona/metabolismo , Regulação Neoplásica da Expressão Gênica , Intervalo Livre de Progressão , Estimativa de Kaplan-Meier
3.
Nucleic Acids Res ; 52(7): 3837-3855, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38452213

RESUMO

CCCTC-binding factor (CTCF) binding sites are hotspots of genome instability. Although many factors have been associated with CTCF binding site fragility, no study has integrated all fragility-related factors to understand the mechanism(s) of how they work together. Using an unbiased, genome-wide approach, we found that DNA double-strand breaks (DSBs) are enriched at strong, but not weak, CTCF binding sites in five human cell types. Energetically favorable alternative DNA secondary structures underlie strong CTCF binding sites. These structures coincided with the location of topoisomerase II (TOP2) cleavage complex, suggesting that DNA secondary structure acts as a recognition sequence for TOP2 binding and cleavage at CTCF binding sites. Furthermore, CTCF knockdown significantly increased DSBs at strong CTCF binding sites and at CTCF sites that are located at topologically associated domain (TAD) boundaries. TAD boundary-associated CTCF sites that lost CTCF upon knockdown displayed increased DSBs when compared to the gained sites, and those lost sites are overrepresented with G-quadruplexes, suggesting that the structures act as boundary insulators in the absence of CTCF, and contribute to increased DSBs. These results model how alternative DNA secondary structures facilitate recruitment of TOP2 to CTCF binding sites, providing mechanistic insight into DNA fragility at CTCF binding sites.


Assuntos
Fator de Ligação a CCCTC , Quebras de DNA de Cadeia Dupla , DNA Topoisomerases Tipo II , DNA , Conformação de Ácido Nucleico , DNA Topoisomerases Tipo II/metabolismo , DNA Topoisomerases Tipo II/genética , DNA Topoisomerases Tipo II/química , Humanos , Fator de Ligação a CCCTC/metabolismo , Fator de Ligação a CCCTC/genética , Sítios de Ligação , DNA/metabolismo , DNA/química , DNA/genética , Ligação Proteica , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/genética , Proteínas de Ligação a Poli-ADP-Ribose/química , Linhagem Celular
4.
Adv Sci (Weinh) ; 11(16): e2306174, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38368261

RESUMO

Patients with concurrent intrahepatic cholangiocarcinoma (ICC) and hepatolithiasis generally have poor prognoses. Hepatolithiasis is once considered the primary cause of ICC, although recent insights indicate that bacteria in the occurrence of hepatolithiasis can promote the progression of ICC. By constructing in vitro and in vivo ICC models and patient-derived organoids (PDOs), it is shown that Escherichia coli induces the production of a novel RNA, circGLIS3 (cGLIS3), which promotes tumor growth. cGLIS3 binds to hnRNPA1 and G3BP1, resulting in the assembly of stress granules (SGs) and suppression of hnRNPA1 and G3BP1 ubiquitination. Consequently, the IKKα mRNA is blocked in SGs, decreasing the production of IKKα and activating the NF-κB pathway, which finally results in chemoresistance and produces metastatic phenotypes of ICC. This study shows that a combination of Icaritin (ICA) and gemcitabine plus cisplatin (GP) chemotherapy can be a promising treatment strategy for ICC.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , DNA Helicases , Progressão da Doença , Escherichia coli , NF-kappa B , RNA Helicases , Colangiocarcinoma/metabolismo , Colangiocarcinoma/genética , Colangiocarcinoma/patologia , Humanos , NF-kappa B/metabolismo , NF-kappa B/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Neoplasias dos Ductos Biliares/metabolismo , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/patologia , Animais , Camundongos , Grânulos de Estresse/metabolismo , Grânulos de Estresse/genética , Transdução de Sinais/genética , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Modelos Animais de Doenças , Gencitabina , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/genética , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/genética
6.
J Cell Biol ; 223(3)2024 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-38284934

RESUMO

Stress granule formation is triggered by the release of mRNAs from polysomes and is promoted by the action of the RNA-binding proteins G3BP1/2. Stress granules have been implicated in several disease states, including cancer and neurodegeneration. Consequently, compounds that limit stress granule formation or promote their dissolution have potential as both experimental tools and novel therapeutics. Herein, we describe two small molecules, G3BP inhibitor a and b (G3Ia and G3Ib), designed to bind to a specific pocket in G3BP1/2 that is targeted by viral inhibitors of G3BP1/2 function. In addition to disrupting the co-condensation of RNA, G3BP1, and caprin 1 in vitro, these compounds inhibit stress granule formation in cells treated prior to or concurrent with stress and dissolve pre-existing stress granules. These effects are consistent across multiple cell types and a variety of initiating stressors. Thus, these compounds represent powerful tools to probe the biology of stress granules and hold promise for therapeutic interventions designed to modulate stress granule formation.


Assuntos
DNA Helicases , RNA Helicases , Grânulos de Estresse , DNA Helicases/genética , Proteínas de Ligação a Poli-ADP-Ribose/genética , RNA Helicases/genética , Proteínas com Motivo de Reconhecimento de RNA/genética
7.
Gynecol Oncol ; 182: 99-107, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38262245

RESUMO

BACKGROUND: POLE mutated endometrial carcinomas may represent a subspecific type of tumors harboring a more favorable prognosis. Grade 3 (G3 or high-grade) endometrioid endometrial carcinomas remain a clinical dilemma, with some tumors behaving as the low-grade counterparts and others presenting a more aggressive behavior. OBJECTIVES: To determine the association between POLE mutational status and the overall-survival (OS) and progression-free-survival (PFS) of patients with G3 endometrioid endometrial cancer (EC). We also aimed to determine the prevalence of POLE mutations in G3 endometrioid EC. METHODS: We conducted a systematic review in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines (PROSPERO No: CRD4202340008). We searched the following electronic databases: PubMed/Medline, EMBASE, Cochrane Library, Scopus, and Web of Science. For time-to-event data, the effect of POLE mutation in G3 EC was described using hazard ratios (HRs) and corresponding 95% confidence intervals (CIs). Individual patient data for each study was investigated if available from the study authors. If individual patient data were not available, information regarding time-to-event outcomes was extracted using an appropriate methodology. OS and PFS were analyzed using both one-stage and two-stage approaches, the Kaplan-Meier method, and Cox-proportional hazards models. RESULTS: This systematic review and meta-analysis included 19 studies with 3092 patients who had high-grade endometrioid EC. Patients with POLE mutations had lower risks of death (HR = 0.36, 95% CI 0.26 to 0.50, I2 = 0%, 10 trials) and disease progression (HR = 0.31, 95% CI 0.17 to 0.57, I2 = 33%, 10 trials). The pooled prevalence of POLE mutation was 11% (95% CI 9 to 13, I2 = 68%, 18 studies). CONCLUSION: POLE mutations in high-grade endometrioid EC are associated with a more favorable prognosis with increased OS and PFS.


Assuntos
Carcinoma Endometrioide , Neoplasias do Endométrio , Feminino , Humanos , Gradação de Tumores , Proteínas de Ligação a Poli-ADP-Ribose/genética , Carcinoma Endometrioide/patologia , Prognóstico , Mutação , Neoplasias do Endométrio/patologia
8.
Pathol Res Pract ; 254: 155152, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38277742

RESUMO

OBJECTIVE: The aim of this study is to delineate the molecular classification features within Chinese endometrial cancer (EC) patients and to evaluate the concurrence between two widely employed methods for diagnosing EC molecular subtypes. METHODS: This retrospective observational cohort study encompassed 479 cases of EC for analysis. Utilizing next-generation sequencing (NGS) panels targeting POLE, TP53, and microsatellite instability (MSI) status, four subtypes [POLE ultramutated (POLE mut), MMR-deficient (MMRd), p53 abnormal (p53abn), and no specific molecular profile (NSMP)] were classified. Immunohistochemistry (IHC) was employed to ascertain the expression of p53 and MMR proteins. RESULTS: Among the 479 patients, the distribution of EC subtypes was as follows: 28 (5.85%) POLE mut, 67 (13.99%) MMRd, 60 (12.53%) p53abn, and 324 (67.64%) NSMP. When compared to published findings on EC subtypes in the Caucasian population, our real-world data on Chinese ECs revealed a notably higher proportion of NSMP/CNL (copy number low). The evaluation of MSI/MMR status through NGS-based and IHC-based methods displayed substantial concordance (Kappa = 0.91). Slight discordance between the two techniques in identifying p53 abnormalities (Kappa = 0.83) might stem from TP53 truncating mutations, cytoplasmic p53 expression, null TP53 mutants, and well-documented challenges in interpreting p53 IHC. CONCLUSIONS: Chinese ECs exhibit distinctive molecular attributes. For accurate molecular subtyping of Chinese ECs, additional molecular markers that align with the Chinese population's characteristics should be incorporated into existing classifiers. The study's outcomes underscore a strong agreement between NGS and IHC in TP53/p53 detection and MSI assessment.


Assuntos
Neoplasias do Endométrio , Proteína Supressora de Tumor p53 , Feminino , Humanos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/genética , Estudos Retrospectivos , DNA Polimerase II/genética , Neoplasias do Endométrio/diagnóstico , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/metabolismo , Mutação , Instabilidade de Microssatélites , China
9.
Cell Rep ; 43(1): 113655, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38219146

RESUMO

Alterations in the exonuclease domain of DNA polymerase ε cause ultramutated cancers. These cancers accumulate AGA>ATA transversions; however, their genomic features beyond the trinucleotide motifs are obscure. We analyze the extended DNA context of ultramutation using whole-exome sequencing data from 524 endometrial and 395 colorectal tumors. We find that G>T transversions in POLE-mutant tumors predominantly affect sequences containing at least six consecutive purines, with a striking preference for certain positions within polypurine tracts. Using this signature, we develop a machine-learning classifier to identify tumors with hitherto unknown POLE drivers and validate two drivers, POLE-E978G and POLE-S461L, by functional assays in yeast. Unlike other pathogenic variants, the E978G substitution affects the polymerase domain of Pol ε. We further show that tumors with POLD1 drivers share the extended signature of POLE ultramutation. These findings expand the understanding of ultramutation mechanisms and highlight peculiar mutagenic properties of polypurine tracts in the human genome.


Assuntos
Neoplasias Colorretais , DNA Polimerase II , Humanos , DNA Polimerase II/genética , DNA Polimerase II/metabolismo , Mutação/genética , Mutagênese , Neoplasias Colorretais/patologia , DNA Polimerase III/genética , Sequenciamento do Exoma , Proteínas de Ligação a Poli-ADP-Ribose/genética
10.
JAMA Netw Open ; 7(1): e2351906, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38231514

RESUMO

Importance: Black patients with endometrial cancer (EC) in the United States have higher mortality than patients of other races with EC. The prevalence of POLE and POLD1 pathogenic alterations in patients of different races with EC are not well studied. Objective: To explore the prevalence of and outcomes associated with POLE and POLD1 alterations in differential racial groups. Design, Setting, and Participants: This retrospective cohort study incorporated the largest available data set of patients with EC, including American Association for Cancer Research Project GENIE (Genomics Evidence Neoplasia Information Exchange; 5087 participants), Memorial Sloan Kettering-Metastatic Events and Tropisms (1315 participants), and the Cancer Genome Atlas Uterine Corpus Endometrial Carcinoma (517 participants), collected from 2015 to 2023, 2013 to 2021, and 2006 to 2012, respectively. The prevalence of and outcomes associated with POLE or POLD1 alterations in EC were evaluated across self-reported racial groups. Exposure: Patients of different racial groups with EC and with or without POLE or POLD1 alterations. Main Outcomes and Measures: The main outcome was overall survival. Data on demographic characteristics, POLE and POLD1 alteration status, histologic subtype, tumor mutation burden, fraction of genome altered, and microsatellite instability score were collected. Results: A total of 6919 EC cases were studied, of whom 444 (6.4%), 694 (10.0%), and 4869 (70.4%) patients were self-described as Asian, Black, and White, respectively. Within these large data sets, Black patients with EC exhibited a lower weighted average prevalence of pathogenic POLE alterations (0.5% [3 of 590 cases]) compared with Asian (6.1% [26 of 424]) or White (4.6% [204 of 4520]) patients. By contrast, the prevalence of POLD1 pathogenic alterations was 5.0% (21 cases), 3.2% (19 cases), and 5.6% (255 cases) in Asian, Black, and White patients with EC, respectively. Patients with POLD1 alterations had better outcomes regardless of race, histology, and TP53 alteration status. For a total of 241 clinically annotated Black patients with EC, a composite biomarker panel of either POLD1 or POLE alterations identified 7.1% (17 patients) with positive outcomes (1 event at 70 months follow up) in the small sample of available patients. Conclusions and Relevance: In this retrospective clinicopathological study of patients of different racial groups with EC, a composite biomarker panel of either POLD1 or POLE alteration could potentially guide treatment de-escalation, which is especially relevant for Black patients.


Assuntos
DNA Polimerase III , Neoplasias do Endométrio , Proteínas de Ligação a Poli-ADP-Ribose , Feminino , Humanos , Biomarcadores , DNA Polimerase III/genética , Neoplasias do Endométrio/epidemiologia , Neoplasias do Endométrio/genética , Prevalência , Estudos Retrospectivos , Proteínas de Ligação a Poli-ADP-Ribose/genética
11.
J Nanobiotechnology ; 22(1): 35, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38243224

RESUMO

BACKGROUND: Most patients with ovarian cancer (OC) treated with platinum-based chemotherapy have a dismal prognosis owing to drug resistance. However, the regulatory mechanisms of circular RNA (circRNA) and p53 ubiquitination are unknown in platinum-resistant OC. We aimed to identify circRNAs associated with platinum-resistant OC to develop a novel treatment strategy. METHODS: Platinum-resistant circRNAs were screened through circRNA sequencing and validated using quantitative reverse-transcription PCR in OC cells and tissues. The characteristics of circNUP50 were analysed using Sanger sequencing, oligo (dT) primers, ribonuclease R and fluorescence in situ hybridisation assays. Functional experimental studies were performed in vitro and in vivo. The mechanism underlying circNUP50-mediated P53 ubiquitination was investigated through circRNA pull-down analysis and mass spectrometry, luciferase reporters, RNA binding protein immunoprecipitation, immunofluorescence assays, cycloheximide chase assays, and ubiquitination experiments. Finally, a platinum and si-circNUP50 co-delivery nanosystem (Psc@DPP) was constructed to treat platinum-resistant OC in an orthotopic animal model. RESULTS: We found that circNUP50 contributes to platinum-resistant conditions in OC by promoting cell proliferation, affecting the cell cycle, and reducing apoptosis. The si-circNUP50 mRNA sequencing and circRNA pull-down analysis showed that circNUP50 mediates platinum resistance in OC by binding p53 and UBE2T, accelerating p53 ubiquitination. By contrast, miRNA sequencing and circRNA pull-down experiments indicated that circNUP50 could serve as a sponge for miR-197-3p, thereby upregulating G3BP1 to mediate p53 ubiquitination, promoting OC platinum resistance. Psc@DPP effectively overcame platinum resistance in an OC tumour model and provided a novel idea for treating platinum-resistant OC using si-circNUP50. CONCLUSIONS: This study reveals a novel molecular mechanism by which circNUP50 mediates platinum resistance in OC by modulating p53 ubiquitination and provides new insights for developing effective therapeutic strategies for platinum resistance in OC.


Assuntos
MicroRNAs , Neoplasias Ovarianas , Enzimas de Conjugação de Ubiquitina , Animais , Humanos , Feminino , Cisplatino/farmacologia , Cisplatino/uso terapêutico , MicroRNAs/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , DNA Helicases/genética , DNA Helicases/metabolismo , Linhagem Celular Tumoral , Proteínas de Ligação a Poli-ADP-Ribose/genética , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , RNA Helicases/genética , RNA Helicases/metabolismo , RNA Helicases/uso terapêutico , Proteínas com Motivo de Reconhecimento de RNA/genética , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Ubiquitinação , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos
12.
J Cell Sci ; 137(4)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38264908

RESUMO

Activator of G-protein signaling 3 (AGS3; also known as GPSM1), a receptor-independent activator of G-protein signaling, oscillates among defined subcellular compartments and biomolecular condensates (BMCs) in a regulated manner that is likely related to the functional diversity of the protein. We determined the influence of cell stress on the cellular distribution of AGS3 and core material properties of AGS3 BMCs. Cellular stress (oxidative, pHi and thermal) induced the formation of AGS3 BMCs in HeLa and COS-7 cells, as determined by fluorescent microscopy. Oxidative stress-induced AGS3 BMCs were distinct from G3BP1 stress granules and from RNA processing BMCs defined by the P-body protein Dcp1a. Immunoblots indicated that cellular stress shifted AGS3, but not the stress granule protein G3BP1 to a membrane pellet fraction following cell lysis. The stress-induced generation of AGS3 BMCs was reduced by co-expression of the signaling protein Gαi3, but not the AGS3-binding partner DVL2. Fluorescent recovery following photobleaching of individual AGS3 BMCs indicated that there are distinct diffusion kinetics and restricted fluidity for AGS3 BMCs. These data suggest that AGS3 BMCs represent a distinct class of stress granules that serve as a previously unrecognized signal processing node.


Assuntos
Condensados Biomoleculares , Proteínas de Transporte , Proteínas de Transporte/metabolismo , DNA Helicases , Proteínas de Ligação ao GTP/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/genética , RNA Helicases/metabolismo , Proteínas com Motivo de Reconhecimento de RNA , Humanos , Animais
13.
Nat Methods ; 21(2): 247-258, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38200227

RESUMO

RNA-binding proteins (RBPs) regulate diverse cellular processes by dynamically interacting with RNA targets. However, effective methods to capture both stable and transient interactions between RBPs and their RNA targets are still lacking, especially when the interaction is dynamic or samples are limited. Here we present an assay of reverse transcription-based RBP binding site sequencing (ARTR-seq), which relies on in situ reverse transcription of RBP-bound RNAs guided by antibodies to identify RBP binding sites. ARTR-seq avoids ultraviolet crosslinking and immunoprecipitation, allowing for efficient and specific identification of RBP binding sites from as few as 20 cells or a tissue section. Taking advantage of rapid formaldehyde fixation, ARTR-seq enables capturing the dynamic RNA binding by RBPs over a short period of time, as demonstrated by the profiling of dynamic RNA binding of G3BP1 during stress granule assembly on a timescale as short as 10 minutes.


Assuntos
RNA , Transcrição Reversa , RNA/genética , RNA/metabolismo , DNA Helicases/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/genética , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , RNA Helicases/genética , RNA Helicases/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/genética , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Proteínas de Ligação a RNA/metabolismo , Sítios de Ligação/genética , Ligação Proteica
14.
Cancer Res Commun ; 4(1): 213-225, 2024 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-38282550

RESUMO

POLE driver mutations in the exonuclease domain (ExoD driver) are prevalent in several cancers, including colorectal cancer and endometrial cancer, leading to dramatically ultra-high tumor mutation burden (TMB). To understand whether POLE mutations that are not classified as drivers (POLE Variant) contribute to mutagenesis, we assessed TMB in 447 POLE-mutated colorectal cancers, endometrial cancers, and ovarian cancers classified as TMB-high ≥10 mutations/Mb (mut/Mb) or TMB-low <10 mut/Mb. TMB was significantly highest in tumors with "POLE ExoD driver plus POLE Variant" (colorectal cancer and endometrial cancer, P < 0.001; ovarian cancer, P < 0.05). TMB increased with additional POLE variants (P < 0.001), but plateaued at 2, suggesting an association between the presence of these variants and TMB. Integrated analysis of AlphaFold2 POLE models and quantitative stability estimates predicted the impact of multiple POLE variants on POLE functionality. The prevalence of immunogenic neoepitopes was notably higher in the "POLE ExoD driver plus POLE Variant" tumors. Overall, this study reveals a novel correlation between POLE variants in POLE ExoD-driven tumors, and ultra-high TMB. Currently, only select pathogenic ExoD mutations with a reliable association with ultra-high TMB inform clinical practice. Thus, these findings are hypothesis-generating, require functional validation, and could potentially inform tumor classification, treatment responses, and clinical outcomes. SIGNIFICANCE: Somatic POLE ExoD driver mutations cause proofreading deficiency that induces high TMB. This study suggests a novel modifier role for POLE variants in POLE ExoD-driven tumors, associated with ultra-high TMB. These data, in addition to future functional studies, may inform tumor classification, therapeutic response, and patient outcomes.


Assuntos
Neoplasias Colorretais , Neoplasias do Endométrio , Neoplasias Ovarianas , Feminino , Humanos , Mutagênicos , Exonucleases/genética , Proteínas de Ligação a Poli-ADP-Ribose/genética , DNA Polimerase II/genética , Mutação/genética , Neoplasias do Endométrio/genética , Mutagênese , Neoplasias Ovarianas/epidemiologia , Neoplasias Colorretais/genética
15.
Cell Death Dis ; 15(1): 69, 2024 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-38238314

RESUMO

Endometrial carcinoma (EC) is a prevalent gynecological tumor in women, and its treatment and prevention are significant global health concerns. The mutations in DNA polymerase ε (POLE) are recognized as key features of EC and may confer survival benefits in endometrial cancer patients undergoing anti-PD-1/PD-L1 therapy. However, the anti-tumor mechanism of POLE mutations remains largely elusive. This study demonstrates that the hot POLE P286R mutation impedes endometrial tumorigenesis by inducing DNA breakage and activating the cGAS-STING signaling pathway. The POLE mutations were found to inhibit the proliferation and stemness of primary human EC cells. Mechanistically, the POLE mutants enhance DNA damage and suppress its repair through the interaction with DNA repair proteins, leading to genomic instability and the upregulation of cytoplasmic DNA. Additionally, the POLE P286R mutant also increases cGAS level, promotes TBK1 phosphorylation, and stimulates inflammatory gene expression and anti-tumor immune response. Furthermore, the POLE P286R mutation inhibits tumor growth and facilitates the infiltration of cytotoxic T cells in human endometrial cancers. These findings uncover a novel mechanism of POLE mutations in antagonizing tumorigenesis and provide a promising direction for effective cancer therapy.


Assuntos
DNA Polimerase II , Neoplasias do Endométrio , Feminino , Humanos , Carcinogênese/genética , Transformação Celular Neoplásica , DNA , DNA Polimerase II/genética , DNA Polimerase II/metabolismo , Neoplasias do Endométrio/genética , Mutação/genética , Proteínas de Ligação a Poli-ADP-Ribose/genética
16.
Am J Surg Pathol ; 48(3): 292-301, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38062789

RESUMO

Identification of ultramutated/ POLE -mutated endometrial carcinomas ( POLEM ECs) has important implications given its association with better prognosis. However, POLE mutation testing is not widely available. Our objective was to evaluate POLEM ECs versus POLE wild-type ( POLEWT ) ECs, within a cohort of consultation cases with features suggestive of an ultramutated phenotype. Consultation cases of EC that had undergone POLE hotspot mutation testing over a 3.5-year period were included. Tumor morphology and immunohistochemistry were reviewed for both groups. Chi-square test and t test were used for statistical analysis. Of 25 consultation cases, 12 harbored a POLE mutation (48%) and 13 were wild-type (52%). Patients with POLEM ECs were younger (59 vs. 71.3 y; P =0.01). Ambiguous histomorphology (5/12 vs. 1/13; P =0.04) and the presence of more than rare bizarre nuclei (8/12 vs. 2/12; P =0.01) differed significantly between POLEM and POLEWT ECs, respectively. In the POLEM group, one case (1/12) demonstrated PMS2 loss, and one (1/12) showed subclonal MLH1/PMS2 loss. Among POLEWT ECs, 3/13 (23%) showed MLH1/PMS2 loss. p53 was subclonally overexpressed in 4/10 POLEM and 1/13 POLEWT cases ( P =0.06). Mutant p53 patterns were seen in 1/10 POLEM versus 6/13 of POLEWT ECs, respectively ( P =0.06). Within our cohort, the specificity of ambiguous histomorphology, bizarre nuclei, subclonal biomarker expression, and marked tumor-infiltrating lymphocytes for POLEM EC was 83%, 80%, 80%, and 71%, respectively. Where universal POLE testing is not available, these data suggest that morphologic screening (particularly ambiguous histomorphology and the presence of more than rare bizarre nuclei) can be useful for selective enrichment of ECs for POLE testing.


Assuntos
Carcinoma Endometrioide , Neoplasias do Endométrio , Feminino , Humanos , Carcinoma Endometrioide/patologia , Proteína Supressora de Tumor p53/genética , Endonuclease PMS2 de Reparo de Erro de Pareamento/genética , Neoplasias do Endométrio/patologia , Prognóstico , Mutação , Proteínas de Ligação a Poli-ADP-Ribose/genética
17.
Ecotoxicol Environ Saf ; 269: 115755, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38039847

RESUMO

Under various cellular stress conditions, including exposure to toxic chemicals, RNA-binding proteins (RBPs), including Ras GTPase-activating protein-binding protein 1 (G3BP1), aggregate and form stress granule complexes, which serve as hallmarks of cellular stress. The existing methods for analyzing stress granule assembly have limitations in the rapid detection of dynamic cellular stress and ignore the effects of constitutively overexpressed RBP on cellular stress and stress-related processes. Therefore, to overcome these limitations, we established a G3BP1-GFP reporter in a human lung epithelial cell line using CRISPR/Cas9-based knock-in as an alternative system for stress granule analysis. We showed that the G3BP1-GFP reporter system responds to stress conditions and forms a stress granule complex similar to that of native G3BP1. Furthermore, we validated the stress granule response of an established cell line under exposure to various household chemicals. Overall, this novel G3BP1-GFP reporter human lung cell system is capable of monitoring stress granule dynamics in real time and can be used for assessing the lung toxicity of various substances in vitro.


Assuntos
DNA Helicases , Pulmão , RNA Helicases , Grânulos de Estresse , Humanos , DNA Helicases/metabolismo , Pulmão/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/genética , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , RNA Helicases/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/genética , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Grânulos de Estresse/metabolismo , Proteínas de Fluorescência Verde , Genes Reporter
18.
Int J Gynaecol Obstet ; 164(2): 436-459, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37525501

RESUMO

BACKGROUND: When determining adjuvant treatment for endometrial cancer, the decision typically relies on factors such as cancer stage, histologic grade, subtype, and a few histopathologic markers. The Cancer Genome Atlas revealed molecular subtyping of endometrial cancer, which can provide more accurate prognostic information and guide personalized treatment plans. OBJECTIVE: To summarize the expression and molecular basis of the main biomarkers of endometrial cancer. SEARCH STRATEGY: PubMed was searched from January 2000 to March 2023. SELECTION CRITERIA: Studies evaluating molecular subtypes of endometrial cancer and implications for adjuvant treatment strategies. DATA COLLECTION AND ANALYSIS: Three authors independently performed a comprehensive literature search, collected and extracted data, and assessed the methodological quality of the included studies. MAIN RESULTS: We summarized the molecular subtyping of endometrial cancer, including mismatch repair deficient, high microsatellite instability, polymerase epsilon (POLE) exonuclease domain mutated, TP53 gene mutation, and non-specific molecular spectrum. We also summarized planned and ongoing clinical trials and common therapy methods in endometrial cancer. POLE mutated endometrial cancer consistently exhibits favorable patient outcomes, regardless of adjuvant therapy. Genomic similarities between p53 abnormality endometrial cancer and high-grade serous ovarian cancer suggested possible overlapping treatment strategies. High levels of immune checkpoint molecules, such as programmed cell death 1 and programmed cell death 1 ligand 1 can counterbalance mismatch repair deficient endometrial cancer immune phenotype. Hormonal treatment is an appealing option for high-risk non-specific molecular spectrum endometrial cancers, which are typically endometrioid and hormone receptor positive. Combining clinical and pathologic characteristics to guide treatment decisions for patients, including concurrent radiochemotherapy, chemotherapy, inhibitor therapy, endocrine therapy, and immunotherapy, might improve the management of endometrial cancer and provide more effective treatment options for patients. CONCLUSIONS: We have characterized the molecular subtypes of endometrial cancer and discuss their value in terms of a patient-tailored therapy in order to prevent significant under- or overtreatment.


Assuntos
Neoplasias do Endométrio , Feminino , Humanos , Proteínas de Ligação a Poli-ADP-Ribose/genética , Mutação , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/terapia , Prognóstico , Estadiamento de Neoplasias , Biomarcadores Tumorais/genética
19.
Adv Sci (Weinh) ; 11(7): e2305922, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38084438

RESUMO

Immune checkpoint inhibitors (ICIs) show promise as second-line treatment for advanced bladder cancer (BLCA); however, their responsiveness is limited by the immune evasion mechanisms in tumor cells. This study conduct a Cox regression analysis to screen mRNA-binding proteins and reveals an association between Ras GTPase-activating protein-binding protein 1 (G3BP1) and diminished effectiveness of ICI therapy in patients with advanced BLCA. Subsequent investigation demonstrates that G3BP1 enhances immune evasion in BLCA cells by downregulating major histocompatibility complex class I (MHC-I) through phosphoinositide 3-kinase (PI3K)/Akt signaling activation. Mechanistically, G3BP1 interacts with splicing factor synergistic lethal with U5 snRNA 7 (SLU7) to form a complex with poly(A)-binding protein cytoplasmic 1 and eukaryotic translation initiation factor 4 gamma 1. This complex stabilizes the closed-loop structure of the mRNAs of class IA PI3Ks and consequently facilitates their translation and stabilization, thereby activating PI3K/Akt signaling to downregulate MHC-I. Consistently, targeting G3BP1 with epigallocatechin gallate (EGCG) impedes immune evasion and sensitizes BLCA cells to anti-programmed cell death (PD)-1 antibodies in mice. Thus, G3BP1 and SLU7 collaboratively contribute to immune evasion in BLCA, indicating that EGCG is a precision therapeutic agent to enhance the effectiveness of anti-PD-1 therapy.


Assuntos
DNA Helicases , Neoplasias da Bexiga Urinária , Humanos , Animais , Camundongos , DNA Helicases/genética , DNA Helicases/metabolismo , RNA Helicases/genética , RNA Helicases/metabolismo , Fosfatidilinositol 3-Quinases , Proteínas de Ligação a Poli-ADP-Ribose/genética , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Evasão da Resposta Imune , Proteínas com Motivo de Reconhecimento de RNA/genética , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Proteínas de Transporte/genética , Neoplasias da Bexiga Urinária/tratamento farmacológico , Fatores de Processamento de RNA
20.
Life Sci Alliance ; 7(1)2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37891003

RESUMO

Germline pathogenic variants in the exonuclease domain of the replicative DNA polymerase Pol ε encoded by the POLE gene, predispose essentially to colorectal and endometrial tumors by inducing an ultramutator phenotype. It is still unclear whether all the POLE alterations influence similar strength tumorigenesis, immune microenvironment, and treatment response. In this review, we summarize the current understanding of the mechanisms and consequences of POLE mutations in human malignancies; we highlight the heterogeneity of mutation rate and cancer aggressiveness among POLE variants, propose some mechanistic basis underlining such heterogeneity, and discuss novel considerations for the choice and efficacy of therapies of POLE tumors.


Assuntos
DNA Polimerase II , Neoplasias do Endométrio , Feminino , Humanos , DNA Polimerase II/genética , DNA Polimerase II/metabolismo , Replicação do DNA , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/patologia , Mutação em Linhagem Germinativa , Mutação/genética , Microambiente Tumoral , Proteínas de Ligação a Poli-ADP-Ribose/genética , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...